Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=1\left(-210\right)=-210
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-210. To find a and b, set up a system to be solved.
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -210.
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
Calculate the sum for each pair.
a=-15 b=14
The solution is the pair that gives sum -1.
\left(x^{2}-15x\right)+\left(14x-210\right)
Rewrite x^{2}-x-210 as \left(x^{2}-15x\right)+\left(14x-210\right).
x\left(x-15\right)+14\left(x-15\right)
Factor out x in the first and 14 in the second group.
\left(x-15\right)\left(x+14\right)
Factor out common term x-15 by using distributive property.
x^{2}-x-210=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-210\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+840}}{2}
Multiply -4 times -210.
x=\frac{-\left(-1\right)±\sqrt{841}}{2}
Add 1 to 840.
x=\frac{-\left(-1\right)±29}{2}
Take the square root of 841.
x=\frac{1±29}{2}
The opposite of -1 is 1.
x=\frac{30}{2}
Now solve the equation x=\frac{1±29}{2} when ± is plus. Add 1 to 29.
x=15
Divide 30 by 2.
x=-\frac{28}{2}
Now solve the equation x=\frac{1±29}{2} when ± is minus. Subtract 29 from 1.
x=-14
Divide -28 by 2.
x^{2}-x-210=\left(x-15\right)\left(x-\left(-14\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 15 for x_{1} and -14 for x_{2}.
x^{2}-x-210=\left(x-15\right)\left(x+14\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.