Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-90x-800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\left(-800\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -90 for b, and -800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\left(-800\right)}}{2}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100+3200}}{2}
Multiply -4 times -800.
x=\frac{-\left(-90\right)±\sqrt{11300}}{2}
Add 8100 to 3200.
x=\frac{-\left(-90\right)±10\sqrt{113}}{2}
Take the square root of 11300.
x=\frac{90±10\sqrt{113}}{2}
The opposite of -90 is 90.
x=\frac{10\sqrt{113}+90}{2}
Now solve the equation x=\frac{90±10\sqrt{113}}{2} when ± is plus. Add 90 to 10\sqrt{113}.
x=5\sqrt{113}+45
Divide 90+10\sqrt{113} by 2.
x=\frac{90-10\sqrt{113}}{2}
Now solve the equation x=\frac{90±10\sqrt{113}}{2} when ± is minus. Subtract 10\sqrt{113} from 90.
x=45-5\sqrt{113}
Divide 90-10\sqrt{113} by 2.
x=5\sqrt{113}+45 x=45-5\sqrt{113}
The equation is now solved.
x^{2}-90x-800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-90x-800-\left(-800\right)=-\left(-800\right)
Add 800 to both sides of the equation.
x^{2}-90x=-\left(-800\right)
Subtracting -800 from itself leaves 0.
x^{2}-90x=800
Subtract -800 from 0.
x^{2}-90x+\left(-45\right)^{2}=800+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=800+2025
Square -45.
x^{2}-90x+2025=2825
Add 800 to 2025.
\left(x-45\right)^{2}=2825
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{2825}
Take the square root of both sides of the equation.
x-45=5\sqrt{113} x-45=-5\sqrt{113}
Simplify.
x=5\sqrt{113}+45 x=45-5\sqrt{113}
Add 45 to both sides of the equation.