Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x-1024=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1024\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -1024 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1024\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4096}}{2}
Multiply -4 times -1024.
x=\frac{-\left(-8\right)±\sqrt{4160}}{2}
Add 64 to 4096.
x=\frac{-\left(-8\right)±8\sqrt{65}}{2}
Take the square root of 4160.
x=\frac{8±8\sqrt{65}}{2}
The opposite of -8 is 8.
x=\frac{8\sqrt{65}+8}{2}
Now solve the equation x=\frac{8±8\sqrt{65}}{2} when ± is plus. Add 8 to 8\sqrt{65}.
x=4\sqrt{65}+4
Divide 8+8\sqrt{65} by 2.
x=\frac{8-8\sqrt{65}}{2}
Now solve the equation x=\frac{8±8\sqrt{65}}{2} when ± is minus. Subtract 8\sqrt{65} from 8.
x=4-4\sqrt{65}
Divide 8-8\sqrt{65} by 2.
x=4\sqrt{65}+4 x=4-4\sqrt{65}
The equation is now solved.
x^{2}-8x-1024=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x-1024-\left(-1024\right)=-\left(-1024\right)
Add 1024 to both sides of the equation.
x^{2}-8x=-\left(-1024\right)
Subtracting -1024 from itself leaves 0.
x^{2}-8x=1024
Subtract -1024 from 0.
x^{2}-8x+\left(-4\right)^{2}=1024+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=1024+16
Square -4.
x^{2}-8x+16=1040
Add 1024 to 16.
\left(x-4\right)^{2}=1040
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1040}
Take the square root of both sides of the equation.
x-4=4\sqrt{65} x-4=-4\sqrt{65}
Simplify.
x=4\sqrt{65}+4 x=4-4\sqrt{65}
Add 4 to both sides of the equation.