Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+3-3x+2-5x^{2}+4
Combine -7x and 4x to get -3x.
x^{2}-6x+3+2-5x^{2}+4
Combine -3x and -3x to get -6x.
x^{2}-6x+5-5x^{2}+4
Add 3 and 2 to get 5.
-4x^{2}-6x+5+4
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-6x+9
Add 5 and 4 to get 9.
factor(x^{2}-3x+3-3x+2-5x^{2}+4)
Combine -7x and 4x to get -3x.
factor(x^{2}-6x+3+2-5x^{2}+4)
Combine -3x and -3x to get -6x.
factor(x^{2}-6x+5-5x^{2}+4)
Add 3 and 2 to get 5.
factor(-4x^{2}-6x+5+4)
Combine x^{2} and -5x^{2} to get -4x^{2}.
factor(-4x^{2}-6x+9)
Add 5 and 4 to get 9.
-4x^{2}-6x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-4\right)\times 9}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-4\right)\times 9}}{2\left(-4\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+16\times 9}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-6\right)±\sqrt{36+144}}{2\left(-4\right)}
Multiply 16 times 9.
x=\frac{-\left(-6\right)±\sqrt{180}}{2\left(-4\right)}
Add 36 to 144.
x=\frac{-\left(-6\right)±6\sqrt{5}}{2\left(-4\right)}
Take the square root of 180.
x=\frac{6±6\sqrt{5}}{2\left(-4\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{6\sqrt{5}+6}{-8}
Now solve the equation x=\frac{6±6\sqrt{5}}{-8} when ± is plus. Add 6 to 6\sqrt{5}.
x=\frac{-3\sqrt{5}-3}{4}
Divide 6+6\sqrt{5} by -8.
x=\frac{6-6\sqrt{5}}{-8}
Now solve the equation x=\frac{6±6\sqrt{5}}{-8} when ± is minus. Subtract 6\sqrt{5} from 6.
x=\frac{3\sqrt{5}-3}{4}
Divide 6-6\sqrt{5} by -8.
-4x^{2}-6x+9=-4\left(x-\frac{-3\sqrt{5}-3}{4}\right)\left(x-\frac{3\sqrt{5}-3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3-3\sqrt{5}}{4} for x_{1} and \frac{-3+3\sqrt{5}}{4} for x_{2}.