Solve for x
x = \frac{\sqrt{4485} + 75}{2} \approx 70.985071301
x = \frac{75 - \sqrt{4485}}{2} \approx 4.014928699
Graph
Share
Copied to clipboard
x^{2}-75x+285=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-75\right)±\sqrt{\left(-75\right)^{2}-4\times 285}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -75 for b, and 285 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-75\right)±\sqrt{5625-4\times 285}}{2}
Square -75.
x=\frac{-\left(-75\right)±\sqrt{5625-1140}}{2}
Multiply -4 times 285.
x=\frac{-\left(-75\right)±\sqrt{4485}}{2}
Add 5625 to -1140.
x=\frac{75±\sqrt{4485}}{2}
The opposite of -75 is 75.
x=\frac{\sqrt{4485}+75}{2}
Now solve the equation x=\frac{75±\sqrt{4485}}{2} when ± is plus. Add 75 to \sqrt{4485}.
x=\frac{75-\sqrt{4485}}{2}
Now solve the equation x=\frac{75±\sqrt{4485}}{2} when ± is minus. Subtract \sqrt{4485} from 75.
x=\frac{\sqrt{4485}+75}{2} x=\frac{75-\sqrt{4485}}{2}
The equation is now solved.
x^{2}-75x+285=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-75x+285-285=-285
Subtract 285 from both sides of the equation.
x^{2}-75x=-285
Subtracting 285 from itself leaves 0.
x^{2}-75x+\left(-\frac{75}{2}\right)^{2}=-285+\left(-\frac{75}{2}\right)^{2}
Divide -75, the coefficient of the x term, by 2 to get -\frac{75}{2}. Then add the square of -\frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-75x+\frac{5625}{4}=-285+\frac{5625}{4}
Square -\frac{75}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-75x+\frac{5625}{4}=\frac{4485}{4}
Add -285 to \frac{5625}{4}.
\left(x-\frac{75}{2}\right)^{2}=\frac{4485}{4}
Factor x^{2}-75x+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{2}\right)^{2}}=\sqrt{\frac{4485}{4}}
Take the square root of both sides of the equation.
x-\frac{75}{2}=\frac{\sqrt{4485}}{2} x-\frac{75}{2}=-\frac{\sqrt{4485}}{2}
Simplify.
x=\frac{\sqrt{4485}+75}{2} x=\frac{75-\sqrt{4485}}{2}
Add \frac{75}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}