Solve for x
x=50\sqrt{241}+350\approx 1126.208734813
x=350-50\sqrt{241}\approx -426.208734813
Graph
Share
Copied to clipboard
x^{2}-700x-480000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-700\right)±\sqrt{\left(-700\right)^{2}-4\left(-480000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -700 for b, and -480000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-700\right)±\sqrt{490000-4\left(-480000\right)}}{2}
Square -700.
x=\frac{-\left(-700\right)±\sqrt{490000+1920000}}{2}
Multiply -4 times -480000.
x=\frac{-\left(-700\right)±\sqrt{2410000}}{2}
Add 490000 to 1920000.
x=\frac{-\left(-700\right)±100\sqrt{241}}{2}
Take the square root of 2410000.
x=\frac{700±100\sqrt{241}}{2}
The opposite of -700 is 700.
x=\frac{100\sqrt{241}+700}{2}
Now solve the equation x=\frac{700±100\sqrt{241}}{2} when ± is plus. Add 700 to 100\sqrt{241}.
x=50\sqrt{241}+350
Divide 700+100\sqrt{241} by 2.
x=\frac{700-100\sqrt{241}}{2}
Now solve the equation x=\frac{700±100\sqrt{241}}{2} when ± is minus. Subtract 100\sqrt{241} from 700.
x=350-50\sqrt{241}
Divide 700-100\sqrt{241} by 2.
x=50\sqrt{241}+350 x=350-50\sqrt{241}
The equation is now solved.
x^{2}-700x-480000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-700x-480000-\left(-480000\right)=-\left(-480000\right)
Add 480000 to both sides of the equation.
x^{2}-700x=-\left(-480000\right)
Subtracting -480000 from itself leaves 0.
x^{2}-700x=480000
Subtract -480000 from 0.
x^{2}-700x+\left(-350\right)^{2}=480000+\left(-350\right)^{2}
Divide -700, the coefficient of the x term, by 2 to get -350. Then add the square of -350 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-700x+122500=480000+122500
Square -350.
x^{2}-700x+122500=602500
Add 480000 to 122500.
\left(x-350\right)^{2}=602500
Factor x^{2}-700x+122500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-350\right)^{2}}=\sqrt{602500}
Take the square root of both sides of the equation.
x-350=50\sqrt{241} x-350=-50\sqrt{241}
Simplify.
x=50\sqrt{241}+350 x=350-50\sqrt{241}
Add 350 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}