Factor
\left(x-12\right)\left(x+6\right)
Evaluate
\left(x-12\right)\left(x+6\right)
Graph
Share
Copied to clipboard
a+b=-6 ab=1\left(-72\right)=-72
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-72. To find a and b, set up a system to be solved.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Calculate the sum for each pair.
a=-12 b=6
The solution is the pair that gives sum -6.
\left(x^{2}-12x\right)+\left(6x-72\right)
Rewrite x^{2}-6x-72 as \left(x^{2}-12x\right)+\left(6x-72\right).
x\left(x-12\right)+6\left(x-12\right)
Factor out x in the first and 6 in the second group.
\left(x-12\right)\left(x+6\right)
Factor out common term x-12 by using distributive property.
x^{2}-6x-72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-72\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-72\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+288}}{2}
Multiply -4 times -72.
x=\frac{-\left(-6\right)±\sqrt{324}}{2}
Add 36 to 288.
x=\frac{-\left(-6\right)±18}{2}
Take the square root of 324.
x=\frac{6±18}{2}
The opposite of -6 is 6.
x=\frac{24}{2}
Now solve the equation x=\frac{6±18}{2} when ± is plus. Add 6 to 18.
x=12
Divide 24 by 2.
x=-\frac{12}{2}
Now solve the equation x=\frac{6±18}{2} when ± is minus. Subtract 18 from 6.
x=-6
Divide -12 by 2.
x^{2}-6x-72=\left(x-12\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 12 for x_{1} and -6 for x_{2}.
x^{2}-6x-72=\left(x-12\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}