Solve for x
\left\{\begin{matrix}x=-\frac{y-z^{2}+1}{2\left(z-3\right)}\text{, }&z\neq 3\\x\in \mathrm{R}\text{, }&y=8\text{ and }z=3\end{matrix}\right.
Solve for y
y=-2xz+6x+z^{2}-1
Share
Copied to clipboard
x^{2}-6x+y=\left(x-z\right)^{2}-1
Multiply x-z and x-z to get \left(x-z\right)^{2}.
x^{2}-6x+y=x^{2}-2xz+z^{2}-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-z\right)^{2}.
x^{2}-6x+y-x^{2}=-2xz+z^{2}-1
Subtract x^{2} from both sides.
-6x+y=-2xz+z^{2}-1
Combine x^{2} and -x^{2} to get 0.
-6x+y+2xz=z^{2}-1
Add 2xz to both sides.
-6x+2xz=z^{2}-1-y
Subtract y from both sides.
\left(-6+2z\right)x=z^{2}-1-y
Combine all terms containing x.
\left(2z-6\right)x=z^{2}-y-1
The equation is in standard form.
\frac{\left(2z-6\right)x}{2z-6}=\frac{z^{2}-y-1}{2z-6}
Divide both sides by 2z-6.
x=\frac{z^{2}-y-1}{2z-6}
Dividing by 2z-6 undoes the multiplication by 2z-6.
x=\frac{z^{2}-y-1}{2\left(z-3\right)}
Divide z^{2}-1-y by 2z-6.
x^{2}-6x+y=\left(x-z\right)^{2}-1
Multiply x-z and x-z to get \left(x-z\right)^{2}.
x^{2}-6x+y=x^{2}-2xz+z^{2}-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-z\right)^{2}.
-6x+y=x^{2}-2xz+z^{2}-1-x^{2}
Subtract x^{2} from both sides.
-6x+y=-2xz+z^{2}-1
Combine x^{2} and -x^{2} to get 0.
y=-2xz+z^{2}-1+6x
Add 6x to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}