Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-5 ab=1\left(-6000\right)=-6000
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-6000. To find a and b, set up a system to be solved.
1,-6000 2,-3000 3,-2000 4,-1500 5,-1200 6,-1000 8,-750 10,-600 12,-500 15,-400 16,-375 20,-300 24,-250 25,-240 30,-200 40,-150 48,-125 50,-120 60,-100 75,-80
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6000.
1-6000=-5999 2-3000=-2998 3-2000=-1997 4-1500=-1496 5-1200=-1195 6-1000=-994 8-750=-742 10-600=-590 12-500=-488 15-400=-385 16-375=-359 20-300=-280 24-250=-226 25-240=-215 30-200=-170 40-150=-110 48-125=-77 50-120=-70 60-100=-40 75-80=-5
Calculate the sum for each pair.
a=-80 b=75
The solution is the pair that gives sum -5.
\left(x^{2}-80x\right)+\left(75x-6000\right)
Rewrite x^{2}-5x-6000 as \left(x^{2}-80x\right)+\left(75x-6000\right).
x\left(x-80\right)+75\left(x-80\right)
Factor out x in the first and 75 in the second group.
\left(x-80\right)\left(x+75\right)
Factor out common term x-80 by using distributive property.
x^{2}-5x-6000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6000\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6000\right)}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+24000}}{2}
Multiply -4 times -6000.
x=\frac{-\left(-5\right)±\sqrt{24025}}{2}
Add 25 to 24000.
x=\frac{-\left(-5\right)±155}{2}
Take the square root of 24025.
x=\frac{5±155}{2}
The opposite of -5 is 5.
x=\frac{160}{2}
Now solve the equation x=\frac{5±155}{2} when ± is plus. Add 5 to 155.
x=80
Divide 160 by 2.
x=-\frac{150}{2}
Now solve the equation x=\frac{5±155}{2} when ± is minus. Subtract 155 from 5.
x=-75
Divide -150 by 2.
x^{2}-5x-6000=\left(x-80\right)\left(x-\left(-75\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 80 for x_{1} and -75 for x_{2}.
x^{2}-5x-6000=\left(x-80\right)\left(x+75\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.