Solve for x (complex solution)
x=\frac{31+\sqrt{383}i}{6}\approx 5.166666667+3.261730965i
x=\frac{-\sqrt{383}i+31}{6}\approx 5.166666667-3.261730965i
Graph
Share
Copied to clipboard
2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
Multiply both sides of the equation by 2.
3x^{2}-8x+16-28x+200=-x-4x+104
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-36x+16+200=-x-4x+104
Combine -8x and -28x to get -36x.
3x^{2}-36x+216=-x-4x+104
Add 16 and 200 to get 216.
3x^{2}-36x+216+x=-4x+104
Add x to both sides.
3x^{2}-35x+216=-4x+104
Combine -36x and x to get -35x.
3x^{2}-35x+216+4x=104
Add 4x to both sides.
3x^{2}-31x+216=104
Combine -35x and 4x to get -31x.
3x^{2}-31x+216-104=0
Subtract 104 from both sides.
3x^{2}-31x+112=0
Subtract 104 from 216 to get 112.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 3\times 112}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -31 for b, and 112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-31\right)±\sqrt{961-4\times 3\times 112}}{2\times 3}
Square -31.
x=\frac{-\left(-31\right)±\sqrt{961-12\times 112}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-31\right)±\sqrt{961-1344}}{2\times 3}
Multiply -12 times 112.
x=\frac{-\left(-31\right)±\sqrt{-383}}{2\times 3}
Add 961 to -1344.
x=\frac{-\left(-31\right)±\sqrt{383}i}{2\times 3}
Take the square root of -383.
x=\frac{31±\sqrt{383}i}{2\times 3}
The opposite of -31 is 31.
x=\frac{31±\sqrt{383}i}{6}
Multiply 2 times 3.
x=\frac{31+\sqrt{383}i}{6}
Now solve the equation x=\frac{31±\sqrt{383}i}{6} when ± is plus. Add 31 to i\sqrt{383}.
x=\frac{-\sqrt{383}i+31}{6}
Now solve the equation x=\frac{31±\sqrt{383}i}{6} when ± is minus. Subtract i\sqrt{383} from 31.
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
The equation is now solved.
2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
Multiply both sides of the equation by 2.
3x^{2}-8x+16-28x+200=-x-4x+104
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-36x+16+200=-x-4x+104
Combine -8x and -28x to get -36x.
3x^{2}-36x+216=-x-4x+104
Add 16 and 200 to get 216.
3x^{2}-36x+216+x=-4x+104
Add x to both sides.
3x^{2}-35x+216=-4x+104
Combine -36x and x to get -35x.
3x^{2}-35x+216+4x=104
Add 4x to both sides.
3x^{2}-31x+216=104
Combine -35x and 4x to get -31x.
3x^{2}-31x=104-216
Subtract 216 from both sides.
3x^{2}-31x=-112
Subtract 216 from 104 to get -112.
\frac{3x^{2}-31x}{3}=-\frac{112}{3}
Divide both sides by 3.
x^{2}-\frac{31}{3}x=-\frac{112}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{31}{3}x+\left(-\frac{31}{6}\right)^{2}=-\frac{112}{3}+\left(-\frac{31}{6}\right)^{2}
Divide -\frac{31}{3}, the coefficient of the x term, by 2 to get -\frac{31}{6}. Then add the square of -\frac{31}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{112}{3}+\frac{961}{36}
Square -\frac{31}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{383}{36}
Add -\frac{112}{3} to \frac{961}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{31}{6}\right)^{2}=-\frac{383}{36}
Factor x^{2}-\frac{31}{3}x+\frac{961}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{6}\right)^{2}}=\sqrt{-\frac{383}{36}}
Take the square root of both sides of the equation.
x-\frac{31}{6}=\frac{\sqrt{383}i}{6} x-\frac{31}{6}=-\frac{\sqrt{383}i}{6}
Simplify.
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
Add \frac{31}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}