Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-49=9-\left(x^{2}-7x+\frac{49}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{7}{2}\right)^{2}.
x^{2}-49=9-x^{2}+7x-\frac{49}{4}
To find the opposite of x^{2}-7x+\frac{49}{4}, find the opposite of each term.
x^{2}-49=-\frac{13}{4}-x^{2}+7x
Subtract \frac{49}{4} from 9 to get -\frac{13}{4}.
x^{2}-49-\left(-\frac{13}{4}\right)=-x^{2}+7x
Subtract -\frac{13}{4} from both sides.
x^{2}-49+\frac{13}{4}=-x^{2}+7x
The opposite of -\frac{13}{4} is \frac{13}{4}.
x^{2}-49+\frac{13}{4}+x^{2}=7x
Add x^{2} to both sides.
x^{2}-\frac{183}{4}+x^{2}=7x
Add -49 and \frac{13}{4} to get -\frac{183}{4}.
2x^{2}-\frac{183}{4}=7x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-\frac{183}{4}-7x=0
Subtract 7x from both sides.
2x^{2}-7x-\frac{183}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-\frac{183}{4}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and -\frac{183}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-\frac{183}{4}\right)}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-\frac{183}{4}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49+366}}{2\times 2}
Multiply -8 times -\frac{183}{4}.
x=\frac{-\left(-7\right)±\sqrt{415}}{2\times 2}
Add 49 to 366.
x=\frac{7±\sqrt{415}}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±\sqrt{415}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{415}+7}{4}
Now solve the equation x=\frac{7±\sqrt{415}}{4} when ± is plus. Add 7 to \sqrt{415}.
x=\frac{7-\sqrt{415}}{4}
Now solve the equation x=\frac{7±\sqrt{415}}{4} when ± is minus. Subtract \sqrt{415} from 7.
x=\frac{\sqrt{415}+7}{4} x=\frac{7-\sqrt{415}}{4}
The equation is now solved.
x^{2}-49=9-\left(x^{2}-7x+\frac{49}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{7}{2}\right)^{2}.
x^{2}-49=9-x^{2}+7x-\frac{49}{4}
To find the opposite of x^{2}-7x+\frac{49}{4}, find the opposite of each term.
x^{2}-49=-\frac{13}{4}-x^{2}+7x
Subtract \frac{49}{4} from 9 to get -\frac{13}{4}.
x^{2}-49+x^{2}=-\frac{13}{4}+7x
Add x^{2} to both sides.
2x^{2}-49=-\frac{13}{4}+7x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-49-7x=-\frac{13}{4}
Subtract 7x from both sides.
2x^{2}-7x=-\frac{13}{4}+49
Add 49 to both sides.
2x^{2}-7x=\frac{183}{4}
Add -\frac{13}{4} and 49 to get \frac{183}{4}.
\frac{2x^{2}-7x}{2}=\frac{\frac{183}{4}}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=\frac{\frac{183}{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x=\frac{183}{8}
Divide \frac{183}{4} by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{183}{8}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{183}{8}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{415}{16}
Add \frac{183}{8} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{415}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{415}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{415}}{4} x-\frac{7}{4}=-\frac{\sqrt{415}}{4}
Simplify.
x=\frac{\sqrt{415}+7}{4} x=\frac{7-\sqrt{415}}{4}
Add \frac{7}{4} to both sides of the equation.