Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-45x-700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\left(-700\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -45 for b, and -700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\left(-700\right)}}{2}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025+2800}}{2}
Multiply -4 times -700.
x=\frac{-\left(-45\right)±\sqrt{4825}}{2}
Add 2025 to 2800.
x=\frac{-\left(-45\right)±5\sqrt{193}}{2}
Take the square root of 4825.
x=\frac{45±5\sqrt{193}}{2}
The opposite of -45 is 45.
x=\frac{5\sqrt{193}+45}{2}
Now solve the equation x=\frac{45±5\sqrt{193}}{2} when ± is plus. Add 45 to 5\sqrt{193}.
x=\frac{45-5\sqrt{193}}{2}
Now solve the equation x=\frac{45±5\sqrt{193}}{2} when ± is minus. Subtract 5\sqrt{193} from 45.
x=\frac{5\sqrt{193}+45}{2} x=\frac{45-5\sqrt{193}}{2}
The equation is now solved.
x^{2}-45x-700=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-45x-700-\left(-700\right)=-\left(-700\right)
Add 700 to both sides of the equation.
x^{2}-45x=-\left(-700\right)
Subtracting -700 from itself leaves 0.
x^{2}-45x=700
Subtract -700 from 0.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=700+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=700+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{4825}{4}
Add 700 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{4825}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{4825}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{5\sqrt{193}}{2} x-\frac{45}{2}=-\frac{5\sqrt{193}}{2}
Simplify.
x=\frac{5\sqrt{193}+45}{2} x=\frac{45-5\sqrt{193}}{2}
Add \frac{45}{2} to both sides of the equation.