Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-406x+26569=0
Calculate 163 to the power of 2 and get 26569.
x=\frac{-\left(-406\right)±\sqrt{\left(-406\right)^{2}-4\times 26569}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -406 for b, and 26569 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-406\right)±\sqrt{164836-4\times 26569}}{2}
Square -406.
x=\frac{-\left(-406\right)±\sqrt{164836-106276}}{2}
Multiply -4 times 26569.
x=\frac{-\left(-406\right)±\sqrt{58560}}{2}
Add 164836 to -106276.
x=\frac{-\left(-406\right)±8\sqrt{915}}{2}
Take the square root of 58560.
x=\frac{406±8\sqrt{915}}{2}
The opposite of -406 is 406.
x=\frac{8\sqrt{915}+406}{2}
Now solve the equation x=\frac{406±8\sqrt{915}}{2} when ± is plus. Add 406 to 8\sqrt{915}.
x=4\sqrt{915}+203
Divide 406+8\sqrt{915} by 2.
x=\frac{406-8\sqrt{915}}{2}
Now solve the equation x=\frac{406±8\sqrt{915}}{2} when ± is minus. Subtract 8\sqrt{915} from 406.
x=203-4\sqrt{915}
Divide 406-8\sqrt{915} by 2.
x=4\sqrt{915}+203 x=203-4\sqrt{915}
The equation is now solved.
x^{2}-406x+26569=0
Calculate 163 to the power of 2 and get 26569.
x^{2}-406x=-26569
Subtract 26569 from both sides. Anything subtracted from zero gives its negation.
x^{2}-406x+\left(-203\right)^{2}=-26569+\left(-203\right)^{2}
Divide -406, the coefficient of the x term, by 2 to get -203. Then add the square of -203 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-406x+41209=-26569+41209
Square -203.
x^{2}-406x+41209=14640
Add -26569 to 41209.
\left(x-203\right)^{2}=14640
Factor x^{2}-406x+41209. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-203\right)^{2}}=\sqrt{14640}
Take the square root of both sides of the equation.
x-203=4\sqrt{915} x-203=-4\sqrt{915}
Simplify.
x=4\sqrt{915}+203 x=203-4\sqrt{915}
Add 203 to both sides of the equation.