Solve for x
x=-\frac{1}{2}=-0.5
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
x^{2}-3x-\frac{7}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{7}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -\frac{7}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{7}{4}\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+7}}{2}
Multiply -4 times -\frac{7}{4}.
x=\frac{-\left(-3\right)±\sqrt{16}}{2}
Add 9 to 7.
x=\frac{-\left(-3\right)±4}{2}
Take the square root of 16.
x=\frac{3±4}{2}
The opposite of -3 is 3.
x=\frac{7}{2}
Now solve the equation x=\frac{3±4}{2} when ± is plus. Add 3 to 4.
x=-\frac{1}{2}
Now solve the equation x=\frac{3±4}{2} when ± is minus. Subtract 4 from 3.
x=\frac{7}{2} x=-\frac{1}{2}
The equation is now solved.
x^{2}-3x-\frac{7}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3x-\frac{7}{4}-\left(-\frac{7}{4}\right)=-\left(-\frac{7}{4}\right)
Add \frac{7}{4} to both sides of the equation.
x^{2}-3x=-\left(-\frac{7}{4}\right)
Subtracting -\frac{7}{4} from itself leaves 0.
x^{2}-3x=\frac{7}{4}
Subtract -\frac{7}{4} from 0.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{7+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=4
Add \frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=4
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-\frac{3}{2}=2 x-\frac{3}{2}=-2
Simplify.
x=\frac{7}{2} x=-\frac{1}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}