Solve for x
x=6\sqrt{7}+18\approx 33.874507866
x=18-6\sqrt{7}\approx 2.125492134
Graph
Share
Copied to clipboard
x^{2}-36x+72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 72}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -36 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 72}}{2}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-288}}{2}
Multiply -4 times 72.
x=\frac{-\left(-36\right)±\sqrt{1008}}{2}
Add 1296 to -288.
x=\frac{-\left(-36\right)±12\sqrt{7}}{2}
Take the square root of 1008.
x=\frac{36±12\sqrt{7}}{2}
The opposite of -36 is 36.
x=\frac{12\sqrt{7}+36}{2}
Now solve the equation x=\frac{36±12\sqrt{7}}{2} when ± is plus. Add 36 to 12\sqrt{7}.
x=6\sqrt{7}+18
Divide 36+12\sqrt{7} by 2.
x=\frac{36-12\sqrt{7}}{2}
Now solve the equation x=\frac{36±12\sqrt{7}}{2} when ± is minus. Subtract 12\sqrt{7} from 36.
x=18-6\sqrt{7}
Divide 36-12\sqrt{7} by 2.
x=6\sqrt{7}+18 x=18-6\sqrt{7}
The equation is now solved.
x^{2}-36x+72=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-36x+72-72=-72
Subtract 72 from both sides of the equation.
x^{2}-36x=-72
Subtracting 72 from itself leaves 0.
x^{2}-36x+\left(-18\right)^{2}=-72+\left(-18\right)^{2}
Divide -36, the coefficient of the x term, by 2 to get -18. Then add the square of -18 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-36x+324=-72+324
Square -18.
x^{2}-36x+324=252
Add -72 to 324.
\left(x-18\right)^{2}=252
Factor x^{2}-36x+324. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-18\right)^{2}}=\sqrt{252}
Take the square root of both sides of the equation.
x-18=6\sqrt{7} x-18=-6\sqrt{7}
Simplify.
x=6\sqrt{7}+18 x=18-6\sqrt{7}
Add 18 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}