Solve for x (complex solution)
x=15+5\sqrt{119}i\approx 15+54.543560573i
x=-5\sqrt{119}i+15\approx 15-54.543560573i
Graph
Share
Copied to clipboard
x^{2}-30x+3200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 3200}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -30 for b, and 3200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 3200}}{2}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-12800}}{2}
Multiply -4 times 3200.
x=\frac{-\left(-30\right)±\sqrt{-11900}}{2}
Add 900 to -12800.
x=\frac{-\left(-30\right)±10\sqrt{119}i}{2}
Take the square root of -11900.
x=\frac{30±10\sqrt{119}i}{2}
The opposite of -30 is 30.
x=\frac{30+10\sqrt{119}i}{2}
Now solve the equation x=\frac{30±10\sqrt{119}i}{2} when ± is plus. Add 30 to 10i\sqrt{119}.
x=15+5\sqrt{119}i
Divide 30+10i\sqrt{119} by 2.
x=\frac{-10\sqrt{119}i+30}{2}
Now solve the equation x=\frac{30±10\sqrt{119}i}{2} when ± is minus. Subtract 10i\sqrt{119} from 30.
x=-5\sqrt{119}i+15
Divide 30-10i\sqrt{119} by 2.
x=15+5\sqrt{119}i x=-5\sqrt{119}i+15
The equation is now solved.
x^{2}-30x+3200=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-30x+3200-3200=-3200
Subtract 3200 from both sides of the equation.
x^{2}-30x=-3200
Subtracting 3200 from itself leaves 0.
x^{2}-30x+\left(-15\right)^{2}=-3200+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-3200+225
Square -15.
x^{2}-30x+225=-2975
Add -3200 to 225.
\left(x-15\right)^{2}=-2975
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{-2975}
Take the square root of both sides of the equation.
x-15=5\sqrt{119}i x-15=-5\sqrt{119}i
Simplify.
x=15+5\sqrt{119}i x=-5\sqrt{119}i+15
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}