Solve for x
x=5\sqrt{3}+15\approx 23.660254038
x=15-5\sqrt{3}\approx 6.339745962
Graph
Share
Copied to clipboard
x^{2}-30x+150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 150}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -30 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 150}}{2}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-600}}{2}
Multiply -4 times 150.
x=\frac{-\left(-30\right)±\sqrt{300}}{2}
Add 900 to -600.
x=\frac{-\left(-30\right)±10\sqrt{3}}{2}
Take the square root of 300.
x=\frac{30±10\sqrt{3}}{2}
The opposite of -30 is 30.
x=\frac{10\sqrt{3}+30}{2}
Now solve the equation x=\frac{30±10\sqrt{3}}{2} when ± is plus. Add 30 to 10\sqrt{3}.
x=5\sqrt{3}+15
Divide 30+10\sqrt{3} by 2.
x=\frac{30-10\sqrt{3}}{2}
Now solve the equation x=\frac{30±10\sqrt{3}}{2} when ± is minus. Subtract 10\sqrt{3} from 30.
x=15-5\sqrt{3}
Divide 30-10\sqrt{3} by 2.
x=5\sqrt{3}+15 x=15-5\sqrt{3}
The equation is now solved.
x^{2}-30x+150=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-30x+150-150=-150
Subtract 150 from both sides of the equation.
x^{2}-30x=-150
Subtracting 150 from itself leaves 0.
x^{2}-30x+\left(-15\right)^{2}=-150+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-150+225
Square -15.
x^{2}-30x+225=75
Add -150 to 225.
\left(x-15\right)^{2}=75
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{75}
Take the square root of both sides of the equation.
x-15=5\sqrt{3} x-15=-5\sqrt{3}
Simplify.
x=5\sqrt{3}+15 x=15-5\sqrt{3}
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}