Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+26=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 26}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 26}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-104}}{2}
Multiply -4 times 26.
x=\frac{-\left(-2\right)±\sqrt{-100}}{2}
Add 4 to -104.
x=\frac{-\left(-2\right)±10i}{2}
Take the square root of -100.
x=\frac{2±10i}{2}
The opposite of -2 is 2.
x=\frac{2+10i}{2}
Now solve the equation x=\frac{2±10i}{2} when ± is plus. Add 2 to 10i.
x=1+5i
Divide 2+10i by 2.
x=\frac{2-10i}{2}
Now solve the equation x=\frac{2±10i}{2} when ± is minus. Subtract 10i from 2.
x=1-5i
Divide 2-10i by 2.
x=1+5i x=1-5i
The equation is now solved.
x^{2}-2x+26=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2x+26-26=-26
Subtract 26 from both sides of the equation.
x^{2}-2x=-26
Subtracting 26 from itself leaves 0.
x^{2}-2x+1=-26+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-25
Add -26 to 1.
\left(x-1\right)^{2}=-25
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-25}
Take the square root of both sides of the equation.
x-1=5i x-1=-5i
Simplify.
x=1+5i x=1-5i
Add 1 to both sides of the equation.