Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+\frac{5}{4}-\frac{1}{2}x=0
Subtract \frac{1}{2}x from both sides.
x^{2}-\frac{5}{2}x+\frac{5}{4}=0
Combine -2x and -\frac{1}{2}x to get -\frac{5}{2}x.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\times \frac{5}{4}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{5}{2} for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\times \frac{5}{4}}}{2}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-5}}{2}
Multiply -4 times \frac{5}{4}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{5}{4}}}{2}
Add \frac{25}{4} to -5.
x=\frac{-\left(-\frac{5}{2}\right)±\frac{\sqrt{5}}{2}}{2}
Take the square root of \frac{5}{4}.
x=\frac{\frac{5}{2}±\frac{\sqrt{5}}{2}}{2}
The opposite of -\frac{5}{2} is \frac{5}{2}.
x=\frac{\sqrt{5}+5}{2\times 2}
Now solve the equation x=\frac{\frac{5}{2}±\frac{\sqrt{5}}{2}}{2} when ± is plus. Add \frac{5}{2} to \frac{\sqrt{5}}{2}.
x=\frac{\sqrt{5}+5}{4}
Divide \frac{5+\sqrt{5}}{2} by 2.
x=\frac{5-\sqrt{5}}{2\times 2}
Now solve the equation x=\frac{\frac{5}{2}±\frac{\sqrt{5}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{5}}{2} from \frac{5}{2}.
x=\frac{5-\sqrt{5}}{4}
Divide \frac{5-\sqrt{5}}{2} by 2.
x=\frac{\sqrt{5}+5}{4} x=\frac{5-\sqrt{5}}{4}
The equation is now solved.
x^{2}-2x+\frac{5}{4}-\frac{1}{2}x=0
Subtract \frac{1}{2}x from both sides.
x^{2}-\frac{5}{2}x+\frac{5}{4}=0
Combine -2x and -\frac{1}{2}x to get -\frac{5}{2}x.
x^{2}-\frac{5}{2}x=-\frac{5}{4}
Subtract \frac{5}{4} from both sides. Anything subtracted from zero gives its negation.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{5}{4}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{5}{4}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{5}{16}
Add -\frac{5}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{5}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{5}}{4} x-\frac{5}{4}=-\frac{\sqrt{5}}{4}
Simplify.
x=\frac{\sqrt{5}+5}{4} x=\frac{5-\sqrt{5}}{4}
Add \frac{5}{4} to both sides of the equation.