Solve for x
x = \frac{5 \sqrt{2455049093} + 252929}{2} \approx 250335.629934501
x = \frac{252929 - 5 \sqrt{2455049093}}{2} \approx 2593.370065499
Graph
Share
Copied to clipboard
x^{2}-252929x+649212929=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-252929\right)±\sqrt{\left(-252929\right)^{2}-4\times 649212929}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -252929 for b, and 649212929 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-252929\right)±\sqrt{63973079041-4\times 649212929}}{2}
Square -252929.
x=\frac{-\left(-252929\right)±\sqrt{63973079041-2596851716}}{2}
Multiply -4 times 649212929.
x=\frac{-\left(-252929\right)±\sqrt{61376227325}}{2}
Add 63973079041 to -2596851716.
x=\frac{-\left(-252929\right)±5\sqrt{2455049093}}{2}
Take the square root of 61376227325.
x=\frac{252929±5\sqrt{2455049093}}{2}
The opposite of -252929 is 252929.
x=\frac{5\sqrt{2455049093}+252929}{2}
Now solve the equation x=\frac{252929±5\sqrt{2455049093}}{2} when ± is plus. Add 252929 to 5\sqrt{2455049093}.
x=\frac{252929-5\sqrt{2455049093}}{2}
Now solve the equation x=\frac{252929±5\sqrt{2455049093}}{2} when ± is minus. Subtract 5\sqrt{2455049093} from 252929.
x=\frac{5\sqrt{2455049093}+252929}{2} x=\frac{252929-5\sqrt{2455049093}}{2}
The equation is now solved.
x^{2}-252929x+649212929=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-252929x+649212929-649212929=-649212929
Subtract 649212929 from both sides of the equation.
x^{2}-252929x=-649212929
Subtracting 649212929 from itself leaves 0.
x^{2}-252929x+\left(-\frac{252929}{2}\right)^{2}=-649212929+\left(-\frac{252929}{2}\right)^{2}
Divide -252929, the coefficient of the x term, by 2 to get -\frac{252929}{2}. Then add the square of -\frac{252929}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-252929x+\frac{63973079041}{4}=-649212929+\frac{63973079041}{4}
Square -\frac{252929}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-252929x+\frac{63973079041}{4}=\frac{61376227325}{4}
Add -649212929 to \frac{63973079041}{4}.
\left(x-\frac{252929}{2}\right)^{2}=\frac{61376227325}{4}
Factor x^{2}-252929x+\frac{63973079041}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{252929}{2}\right)^{2}}=\sqrt{\frac{61376227325}{4}}
Take the square root of both sides of the equation.
x-\frac{252929}{2}=\frac{5\sqrt{2455049093}}{2} x-\frac{252929}{2}=-\frac{5\sqrt{2455049093}}{2}
Simplify.
x=\frac{5\sqrt{2455049093}+252929}{2} x=\frac{252929-5\sqrt{2455049093}}{2}
Add \frac{252929}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}