Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-24x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 12}}{2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-48}}{2}
Multiply -4 times 12.
x=\frac{-\left(-24\right)±\sqrt{528}}{2}
Add 576 to -48.
x=\frac{-\left(-24\right)±4\sqrt{33}}{2}
Take the square root of 528.
x=\frac{24±4\sqrt{33}}{2}
The opposite of -24 is 24.
x=\frac{4\sqrt{33}+24}{2}
Now solve the equation x=\frac{24±4\sqrt{33}}{2} when ± is plus. Add 24 to 4\sqrt{33}.
x=2\sqrt{33}+12
Divide 24+4\sqrt{33} by 2.
x=\frac{24-4\sqrt{33}}{2}
Now solve the equation x=\frac{24±4\sqrt{33}}{2} when ± is minus. Subtract 4\sqrt{33} from 24.
x=12-2\sqrt{33}
Divide 24-4\sqrt{33} by 2.
x^{2}-24x+12=\left(x-\left(2\sqrt{33}+12\right)\right)\left(x-\left(12-2\sqrt{33}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 12+2\sqrt{33} for x_{1} and 12-2\sqrt{33} for x_{2}.