Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-23x^{2}-25=0
Combine x^{2} and -24x^{2} to get -23x^{2}.
-23x^{2}=25
Add 25 to both sides. Anything plus zero gives itself.
x^{2}=-\frac{25}{23}
Divide both sides by -23.
x=\frac{5\sqrt{23}i}{23} x=-\frac{5\sqrt{23}i}{23}
The equation is now solved.
-23x^{2}-25=0
Combine x^{2} and -24x^{2} to get -23x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-23\right)\left(-25\right)}}{2\left(-23\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -23 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-23\right)\left(-25\right)}}{2\left(-23\right)}
Square 0.
x=\frac{0±\sqrt{92\left(-25\right)}}{2\left(-23\right)}
Multiply -4 times -23.
x=\frac{0±\sqrt{-2300}}{2\left(-23\right)}
Multiply 92 times -25.
x=\frac{0±10\sqrt{23}i}{2\left(-23\right)}
Take the square root of -2300.
x=\frac{0±10\sqrt{23}i}{-46}
Multiply 2 times -23.
x=-\frac{5\sqrt{23}i}{23}
Now solve the equation x=\frac{0±10\sqrt{23}i}{-46} when ± is plus.
x=\frac{5\sqrt{23}i}{23}
Now solve the equation x=\frac{0±10\sqrt{23}i}{-46} when ± is minus.
x=-\frac{5\sqrt{23}i}{23} x=\frac{5\sqrt{23}i}{23}
The equation is now solved.