Solve for x
x = \frac{3 \sqrt{31} + 21}{2} \approx 18.851646544
x = \frac{21 - 3 \sqrt{31}}{2} \approx 2.148353456
Graph
Share
Copied to clipboard
x^{2}-21x+40.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 40.5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -21 for b, and 40.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 40.5}}{2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-162}}{2}
Multiply -4 times 40.5.
x=\frac{-\left(-21\right)±\sqrt{279}}{2}
Add 441 to -162.
x=\frac{-\left(-21\right)±3\sqrt{31}}{2}
Take the square root of 279.
x=\frac{21±3\sqrt{31}}{2}
The opposite of -21 is 21.
x=\frac{3\sqrt{31}+21}{2}
Now solve the equation x=\frac{21±3\sqrt{31}}{2} when ± is plus. Add 21 to 3\sqrt{31}.
x=\frac{21-3\sqrt{31}}{2}
Now solve the equation x=\frac{21±3\sqrt{31}}{2} when ± is minus. Subtract 3\sqrt{31} from 21.
x=\frac{3\sqrt{31}+21}{2} x=\frac{21-3\sqrt{31}}{2}
The equation is now solved.
x^{2}-21x+40.5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-21x+40.5-40.5=-40.5
Subtract 40.5 from both sides of the equation.
x^{2}-21x=-40.5
Subtracting 40.5 from itself leaves 0.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-40.5+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-40.5+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{279}{4}
Add -40.5 to \frac{441}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{21}{2}\right)^{2}=\frac{279}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{279}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{3\sqrt{31}}{2} x-\frac{21}{2}=-\frac{3\sqrt{31}}{2}
Simplify.
x=\frac{3\sqrt{31}+21}{2} x=\frac{21-3\sqrt{31}}{2}
Add \frac{21}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}