Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-200x-2400=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\left(-2400\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{40000-4\left(-2400\right)}}{2}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000+9600}}{2}
Multiply -4 times -2400.
x=\frac{-\left(-200\right)±\sqrt{49600}}{2}
Add 40000 to 9600.
x=\frac{-\left(-200\right)±40\sqrt{31}}{2}
Take the square root of 49600.
x=\frac{200±40\sqrt{31}}{2}
The opposite of -200 is 200.
x=\frac{40\sqrt{31}+200}{2}
Now solve the equation x=\frac{200±40\sqrt{31}}{2} when ± is plus. Add 200 to 40\sqrt{31}.
x=20\sqrt{31}+100
Divide 200+40\sqrt{31} by 2.
x=\frac{200-40\sqrt{31}}{2}
Now solve the equation x=\frac{200±40\sqrt{31}}{2} when ± is minus. Subtract 40\sqrt{31} from 200.
x=100-20\sqrt{31}
Divide 200-40\sqrt{31} by 2.
x^{2}-200x-2400=\left(x-\left(20\sqrt{31}+100\right)\right)\left(x-\left(100-20\sqrt{31}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 100+20\sqrt{31} for x_{1} and 100-20\sqrt{31} for x_{2}.