Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-16x-82=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-82\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-82\right)}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+328}}{2}
Multiply -4 times -82.
x=\frac{-\left(-16\right)±\sqrt{584}}{2}
Add 256 to 328.
x=\frac{-\left(-16\right)±2\sqrt{146}}{2}
Take the square root of 584.
x=\frac{16±2\sqrt{146}}{2}
The opposite of -16 is 16.
x=\frac{2\sqrt{146}+16}{2}
Now solve the equation x=\frac{16±2\sqrt{146}}{2} when ± is plus. Add 16 to 2\sqrt{146}.
x=\sqrt{146}+8
Divide 16+2\sqrt{146} by 2.
x=\frac{16-2\sqrt{146}}{2}
Now solve the equation x=\frac{16±2\sqrt{146}}{2} when ± is minus. Subtract 2\sqrt{146} from 16.
x=8-\sqrt{146}
Divide 16-2\sqrt{146} by 2.
x^{2}-16x-82=\left(x-\left(\sqrt{146}+8\right)\right)\left(x-\left(8-\sqrt{146}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8+\sqrt{146} for x_{1} and 8-\sqrt{146} for x_{2}.