Solve for x
x = \frac{\sqrt{1401} + 33}{4} \approx 17.607483636
x=\frac{33-\sqrt{1401}}{4}\approx -1.107483636
Graph
Share
Copied to clipboard
x^{2}-16.5x-19.5=0
Add -19.6 and 0.1 to get -19.5.
x=\frac{-\left(-16.5\right)±\sqrt{\left(-16.5\right)^{2}-4\left(-19.5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16.5 for b, and -19.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16.5\right)±\sqrt{272.25-4\left(-19.5\right)}}{2}
Square -16.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-16.5\right)±\sqrt{272.25+78}}{2}
Multiply -4 times -19.5.
x=\frac{-\left(-16.5\right)±\sqrt{350.25}}{2}
Add 272.25 to 78.
x=\frac{-\left(-16.5\right)±\frac{\sqrt{1401}}{2}}{2}
Take the square root of 350.25.
x=\frac{16.5±\frac{\sqrt{1401}}{2}}{2}
The opposite of -16.5 is 16.5.
x=\frac{\sqrt{1401}+33}{2\times 2}
Now solve the equation x=\frac{16.5±\frac{\sqrt{1401}}{2}}{2} when ± is plus. Add 16.5 to \frac{\sqrt{1401}}{2}.
x=\frac{\sqrt{1401}+33}{4}
Divide \frac{33+\sqrt{1401}}{2} by 2.
x=\frac{33-\sqrt{1401}}{2\times 2}
Now solve the equation x=\frac{16.5±\frac{\sqrt{1401}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{1401}}{2} from 16.5.
x=\frac{33-\sqrt{1401}}{4}
Divide \frac{33-\sqrt{1401}}{2} by 2.
x=\frac{\sqrt{1401}+33}{4} x=\frac{33-\sqrt{1401}}{4}
The equation is now solved.
x^{2}-16.5x-19.5=0
Add -19.6 and 0.1 to get -19.5.
x^{2}-16.5x=19.5
Add 19.5 to both sides. Anything plus zero gives itself.
x^{2}-16.5x+\left(-8.25\right)^{2}=19.5+\left(-8.25\right)^{2}
Divide -16.5, the coefficient of the x term, by 2 to get -8.25. Then add the square of -8.25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16.5x+68.0625=19.5+68.0625
Square -8.25 by squaring both the numerator and the denominator of the fraction.
x^{2}-16.5x+68.0625=87.5625
Add 19.5 to 68.0625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-8.25\right)^{2}=87.5625
Factor x^{2}-16.5x+68.0625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8.25\right)^{2}}=\sqrt{87.5625}
Take the square root of both sides of the equation.
x-8.25=\frac{\sqrt{1401}}{4} x-8.25=-\frac{\sqrt{1401}}{4}
Simplify.
x=\frac{\sqrt{1401}+33}{4} x=\frac{33-\sqrt{1401}}{4}
Add 8.25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}