Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-15x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 6}}{2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-15\right)±\sqrt{201}}{2}
Add 225 to -24.
x=\frac{15±\sqrt{201}}{2}
The opposite of -15 is 15.
x=\frac{\sqrt{201}+15}{2}
Now solve the equation x=\frac{15±\sqrt{201}}{2} when ± is plus. Add 15 to \sqrt{201}.
x=\frac{15-\sqrt{201}}{2}
Now solve the equation x=\frac{15±\sqrt{201}}{2} when ± is minus. Subtract \sqrt{201} from 15.
x^{2}-15x+6=\left(x-\frac{\sqrt{201}+15}{2}\right)\left(x-\frac{15-\sqrt{201}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15+\sqrt{201}}{2} for x_{1} and \frac{15-\sqrt{201}}{2} for x_{2}.