Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-157x+6045=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-157\right)±\sqrt{\left(-157\right)^{2}-4\times 6045}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -157 for b, and 6045 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-157\right)±\sqrt{24649-4\times 6045}}{2}
Square -157.
x=\frac{-\left(-157\right)±\sqrt{24649-24180}}{2}
Multiply -4 times 6045.
x=\frac{-\left(-157\right)±\sqrt{469}}{2}
Add 24649 to -24180.
x=\frac{157±\sqrt{469}}{2}
The opposite of -157 is 157.
x=\frac{\sqrt{469}+157}{2}
Now solve the equation x=\frac{157±\sqrt{469}}{2} when ± is plus. Add 157 to \sqrt{469}.
x=\frac{157-\sqrt{469}}{2}
Now solve the equation x=\frac{157±\sqrt{469}}{2} when ± is minus. Subtract \sqrt{469} from 157.
x=\frac{\sqrt{469}+157}{2} x=\frac{157-\sqrt{469}}{2}
The equation is now solved.
x^{2}-157x+6045=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-157x+6045-6045=-6045
Subtract 6045 from both sides of the equation.
x^{2}-157x=-6045
Subtracting 6045 from itself leaves 0.
x^{2}-157x+\left(-\frac{157}{2}\right)^{2}=-6045+\left(-\frac{157}{2}\right)^{2}
Divide -157, the coefficient of the x term, by 2 to get -\frac{157}{2}. Then add the square of -\frac{157}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-157x+\frac{24649}{4}=-6045+\frac{24649}{4}
Square -\frac{157}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-157x+\frac{24649}{4}=\frac{469}{4}
Add -6045 to \frac{24649}{4}.
\left(x-\frac{157}{2}\right)^{2}=\frac{469}{4}
Factor x^{2}-157x+\frac{24649}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{157}{2}\right)^{2}}=\sqrt{\frac{469}{4}}
Take the square root of both sides of the equation.
x-\frac{157}{2}=\frac{\sqrt{469}}{2} x-\frac{157}{2}=-\frac{\sqrt{469}}{2}
Simplify.
x=\frac{\sqrt{469}+157}{2} x=\frac{157-\sqrt{469}}{2}
Add \frac{157}{2} to both sides of the equation.