Solve for x
x=2\sqrt{149825056769}+774274\approx 1548418.835980968
x=774274-2\sqrt{149825056769}\approx 129.164019032
Graph
Share
Copied to clipboard
x^{2}-1548548x+200000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1548548\right)±\sqrt{\left(-1548548\right)^{2}-4\times 200000000}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1548548 for b, and 200000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1548548\right)±\sqrt{2398000908304-4\times 200000000}}{2}
Square -1548548.
x=\frac{-\left(-1548548\right)±\sqrt{2398000908304-800000000}}{2}
Multiply -4 times 200000000.
x=\frac{-\left(-1548548\right)±\sqrt{2397200908304}}{2}
Add 2398000908304 to -800000000.
x=\frac{-\left(-1548548\right)±4\sqrt{149825056769}}{2}
Take the square root of 2397200908304.
x=\frac{1548548±4\sqrt{149825056769}}{2}
The opposite of -1548548 is 1548548.
x=\frac{4\sqrt{149825056769}+1548548}{2}
Now solve the equation x=\frac{1548548±4\sqrt{149825056769}}{2} when ± is plus. Add 1548548 to 4\sqrt{149825056769}.
x=2\sqrt{149825056769}+774274
Divide 1548548+4\sqrt{149825056769} by 2.
x=\frac{1548548-4\sqrt{149825056769}}{2}
Now solve the equation x=\frac{1548548±4\sqrt{149825056769}}{2} when ± is minus. Subtract 4\sqrt{149825056769} from 1548548.
x=774274-2\sqrt{149825056769}
Divide 1548548-4\sqrt{149825056769} by 2.
x=2\sqrt{149825056769}+774274 x=774274-2\sqrt{149825056769}
The equation is now solved.
x^{2}-1548548x+200000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-1548548x+200000000-200000000=-200000000
Subtract 200000000 from both sides of the equation.
x^{2}-1548548x=-200000000
Subtracting 200000000 from itself leaves 0.
x^{2}-1548548x+\left(-774274\right)^{2}=-200000000+\left(-774274\right)^{2}
Divide -1548548, the coefficient of the x term, by 2 to get -774274. Then add the square of -774274 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1548548x+599500227076=-200000000+599500227076
Square -774274.
x^{2}-1548548x+599500227076=599300227076
Add -200000000 to 599500227076.
\left(x-774274\right)^{2}=599300227076
Factor x^{2}-1548548x+599500227076. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-774274\right)^{2}}=\sqrt{599300227076}
Take the square root of both sides of the equation.
x-774274=2\sqrt{149825056769} x-774274=-2\sqrt{149825056769}
Simplify.
x=2\sqrt{149825056769}+774274 x=774274-2\sqrt{149825056769}
Add 774274 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}