Solve for x
x = \frac{\sqrt{337} + 13}{2} \approx 15.678779875
x=\frac{13-\sqrt{337}}{2}\approx -2.678779875
Graph
Share
Copied to clipboard
x^{2}-13x-42=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-42\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-42\right)}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+168}}{2}
Multiply -4 times -42.
x=\frac{-\left(-13\right)±\sqrt{337}}{2}
Add 169 to 168.
x=\frac{13±\sqrt{337}}{2}
The opposite of -13 is 13.
x=\frac{\sqrt{337}+13}{2}
Now solve the equation x=\frac{13±\sqrt{337}}{2} when ± is plus. Add 13 to \sqrt{337}.
x=\frac{13-\sqrt{337}}{2}
Now solve the equation x=\frac{13±\sqrt{337}}{2} when ± is minus. Subtract \sqrt{337} from 13.
x=\frac{\sqrt{337}+13}{2} x=\frac{13-\sqrt{337}}{2}
The equation is now solved.
x^{2}-13x-42=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-13x-42-\left(-42\right)=-\left(-42\right)
Add 42 to both sides of the equation.
x^{2}-13x=-\left(-42\right)
Subtracting -42 from itself leaves 0.
x^{2}-13x=42
Subtract -42 from 0.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=42+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=42+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{337}{4}
Add 42 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{337}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{337}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{337}}{2} x-\frac{13}{2}=-\frac{\sqrt{337}}{2}
Simplify.
x=\frac{\sqrt{337}+13}{2} x=\frac{13-\sqrt{337}}{2}
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}