Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-13x+24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 24}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 24}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-96}}{2}
Multiply -4 times 24.
x=\frac{-\left(-13\right)±\sqrt{73}}{2}
Add 169 to -96.
x=\frac{13±\sqrt{73}}{2}
The opposite of -13 is 13.
x=\frac{\sqrt{73}+13}{2}
Now solve the equation x=\frac{13±\sqrt{73}}{2} when ± is plus. Add 13 to \sqrt{73}.
x=\frac{13-\sqrt{73}}{2}
Now solve the equation x=\frac{13±\sqrt{73}}{2} when ± is minus. Subtract \sqrt{73} from 13.
x^{2}-13x+24=\left(x-\frac{\sqrt{73}+13}{2}\right)\left(x-\frac{13-\sqrt{73}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{13+\sqrt{73}}{2} for x_{1} and \frac{13-\sqrt{73}}{2} for x_{2}.