Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-12x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-18\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-18\right)}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2}
Multiply -4 times -18.
x=\frac{-\left(-12\right)±\sqrt{216}}{2}
Add 144 to 72.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2}
Take the square root of 216.
x=\frac{12±6\sqrt{6}}{2}
The opposite of -12 is 12.
x=\frac{6\sqrt{6}+12}{2}
Now solve the equation x=\frac{12±6\sqrt{6}}{2} when ± is plus. Add 12 to 6\sqrt{6}.
x=3\sqrt{6}+6
Divide 12+6\sqrt{6} by 2.
x=\frac{12-6\sqrt{6}}{2}
Now solve the equation x=\frac{12±6\sqrt{6}}{2} when ± is minus. Subtract 6\sqrt{6} from 12.
x=6-3\sqrt{6}
Divide 12-6\sqrt{6} by 2.
x^{2}-12x-18=\left(x-\left(3\sqrt{6}+6\right)\right)\left(x-\left(6-3\sqrt{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6+3\sqrt{6} for x_{1} and 6-3\sqrt{6} for x_{2}.