Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-12x-112=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-112\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-112\right)}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+448}}{2}
Multiply -4 times -112.
x=\frac{-\left(-12\right)±\sqrt{592}}{2}
Add 144 to 448.
x=\frac{-\left(-12\right)±4\sqrt{37}}{2}
Take the square root of 592.
x=\frac{12±4\sqrt{37}}{2}
The opposite of -12 is 12.
x=\frac{4\sqrt{37}+12}{2}
Now solve the equation x=\frac{12±4\sqrt{37}}{2} when ± is plus. Add 12 to 4\sqrt{37}.
x=2\sqrt{37}+6
Divide 12+4\sqrt{37} by 2.
x=\frac{12-4\sqrt{37}}{2}
Now solve the equation x=\frac{12±4\sqrt{37}}{2} when ± is minus. Subtract 4\sqrt{37} from 12.
x=6-2\sqrt{37}
Divide 12-4\sqrt{37} by 2.
x^{2}-12x-112=\left(x-\left(2\sqrt{37}+6\right)\right)\left(x-\left(6-2\sqrt{37}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6+2\sqrt{37} for x_{1} and 6-2\sqrt{37} for x_{2}.