Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-11x+56-5x=13
Subtract 5x from both sides.
x^{2}-16x+56=13
Combine -11x and -5x to get -16x.
x^{2}-16x+56-13=0
Subtract 13 from both sides.
x^{2}-16x+43=0
Subtract 13 from 56 to get 43.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 43}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 43 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 43}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-172}}{2}
Multiply -4 times 43.
x=\frac{-\left(-16\right)±\sqrt{84}}{2}
Add 256 to -172.
x=\frac{-\left(-16\right)±2\sqrt{21}}{2}
Take the square root of 84.
x=\frac{16±2\sqrt{21}}{2}
The opposite of -16 is 16.
x=\frac{2\sqrt{21}+16}{2}
Now solve the equation x=\frac{16±2\sqrt{21}}{2} when ± is plus. Add 16 to 2\sqrt{21}.
x=\sqrt{21}+8
Divide 16+2\sqrt{21} by 2.
x=\frac{16-2\sqrt{21}}{2}
Now solve the equation x=\frac{16±2\sqrt{21}}{2} when ± is minus. Subtract 2\sqrt{21} from 16.
x=8-\sqrt{21}
Divide 16-2\sqrt{21} by 2.
x=\sqrt{21}+8 x=8-\sqrt{21}
The equation is now solved.
x^{2}-11x+56-5x=13
Subtract 5x from both sides.
x^{2}-16x+56=13
Combine -11x and -5x to get -16x.
x^{2}-16x=13-56
Subtract 56 from both sides.
x^{2}-16x=-43
Subtract 56 from 13 to get -43.
x^{2}-16x+\left(-8\right)^{2}=-43+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-43+64
Square -8.
x^{2}-16x+64=21
Add -43 to 64.
\left(x-8\right)^{2}=21
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x-8=\sqrt{21} x-8=-\sqrt{21}
Simplify.
x=\sqrt{21}+8 x=8-\sqrt{21}
Add 8 to both sides of the equation.