Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-60\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-60\right)}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+240}}{2}
Multiply -4 times -60.
x=\frac{-\left(-10\right)±\sqrt{340}}{2}
Add 100 to 240.
x=\frac{-\left(-10\right)±2\sqrt{85}}{2}
Take the square root of 340.
x=\frac{10±2\sqrt{85}}{2}
The opposite of -10 is 10.
x=\frac{2\sqrt{85}+10}{2}
Now solve the equation x=\frac{10±2\sqrt{85}}{2} when ± is plus. Add 10 to 2\sqrt{85}.
x=\sqrt{85}+5
Divide 10+2\sqrt{85} by 2.
x=\frac{10-2\sqrt{85}}{2}
Now solve the equation x=\frac{10±2\sqrt{85}}{2} when ± is minus. Subtract 2\sqrt{85} from 10.
x=5-\sqrt{85}
Divide 10-2\sqrt{85} by 2.
x^{2}-10x-60=\left(x-\left(\sqrt{85}+5\right)\right)\left(x-\left(5-\sqrt{85}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5+\sqrt{85} for x_{1} and 5-\sqrt{85} for x_{2}.