Solve for x (complex solution)
x=\frac{2+i\times 2\sqrt{2}}{25}\approx 0.08+0.113137085i
x=\frac{-i\times 2\sqrt{2}+2}{25}\approx 0.08-0.113137085i
Graph
Share
Copied to clipboard
x^{2}-0.16x+0.0192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.16\right)±\sqrt{\left(-0.16\right)^{2}-4\times 0.0192}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -0.16 for b, and 0.0192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.16\right)±\sqrt{0.0256-4\times 0.0192}}{2}
Square -0.16 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.16\right)±\sqrt{\frac{16-48}{625}}}{2}
Multiply -4 times 0.0192.
x=\frac{-\left(-0.16\right)±\sqrt{-0.0512}}{2}
Add 0.0256 to -0.0768 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.16\right)±\frac{4\sqrt{2}i}{25}}{2}
Take the square root of -0.0512.
x=\frac{0.16±\frac{4\sqrt{2}i}{25}}{2}
The opposite of -0.16 is 0.16.
x=\frac{4+4\sqrt{2}i}{2\times 25}
Now solve the equation x=\frac{0.16±\frac{4\sqrt{2}i}{25}}{2} when ± is plus. Add 0.16 to \frac{4i\sqrt{2}}{25}.
x=\frac{2+2\sqrt{2}i}{25}
Divide \frac{4+4i\sqrt{2}}{25} by 2.
x=\frac{-4\sqrt{2}i+4}{2\times 25}
Now solve the equation x=\frac{0.16±\frac{4\sqrt{2}i}{25}}{2} when ± is minus. Subtract \frac{4i\sqrt{2}}{25} from 0.16.
x=\frac{-2\sqrt{2}i+2}{25}
Divide \frac{4-4i\sqrt{2}}{25} by 2.
x=\frac{2+2\sqrt{2}i}{25} x=\frac{-2\sqrt{2}i+2}{25}
The equation is now solved.
x^{2}-0.16x+0.0192=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-0.16x+0.0192-0.0192=-0.0192
Subtract 0.0192 from both sides of the equation.
x^{2}-0.16x=-0.0192
Subtracting 0.0192 from itself leaves 0.
x^{2}-0.16x+\left(-0.08\right)^{2}=-0.0192+\left(-0.08\right)^{2}
Divide -0.16, the coefficient of the x term, by 2 to get -0.08. Then add the square of -0.08 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.16x+0.0064=\frac{-12+4}{625}
Square -0.08 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.16x+0.0064=-0.0128
Add -0.0192 to 0.0064 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.08\right)^{2}=-0.0128
Factor x^{2}-0.16x+0.0064. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.08\right)^{2}}=\sqrt{-0.0128}
Take the square root of both sides of the equation.
x-0.08=\frac{2\sqrt{2}i}{25} x-0.08=-\frac{2\sqrt{2}i}{25}
Simplify.
x=\frac{2+2\sqrt{2}i}{25} x=\frac{-2\sqrt{2}i+2}{25}
Add 0.08 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}