Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x^{4}=4
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
x^{2}-x^{4}-4=0
Subtract 4 from both sides.
-t^{2}+t-4=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-4\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 1 for b, and -4 for c in the quadratic formula.
t=\frac{-1±\sqrt{-15}}{-2}
Do the calculations.
t=\frac{-\sqrt{15}i+1}{2} t=\frac{1+\sqrt{15}i}{2}
Solve the equation t=\frac{-1±\sqrt{-15}}{-2} when ± is plus and when ± is minus.
x=\sqrt{2}e^{-\frac{\arctan(\sqrt{15})i}{2}} x=\sqrt{2}e^{\frac{-\arctan(\sqrt{15})i+2\pi i}{2}} x=\sqrt{2}e^{\frac{\arctan(\sqrt{15})i+2\pi i}{2}} x=\sqrt{2}e^{\frac{\arctan(\sqrt{15})i}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.