Solve for a (complex solution)
\left\{\begin{matrix}\\a=x\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-2b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=-\frac{x}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=a\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=x\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-2b\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-\frac{x}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=a\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-\left(ax-2bx\right)-2ab=0
Use the distributive property to multiply a-2b by x.
x^{2}-ax+2bx-2ab=0
To find the opposite of ax-2bx, find the opposite of each term.
-ax+2bx-2ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-ax-2ab=-x^{2}-2bx
Subtract 2bx from both sides.
\left(-x-2b\right)a=-x^{2}-2bx
Combine all terms containing a.
\frac{\left(-x-2b\right)a}{-x-2b}=-\frac{x\left(x+2b\right)}{-x-2b}
Divide both sides by -x-2b.
a=-\frac{x\left(x+2b\right)}{-x-2b}
Dividing by -x-2b undoes the multiplication by -x-2b.
a=x
Divide -x\left(x+2b\right) by -x-2b.
x^{2}-\left(ax-2bx\right)-2ab=0
Use the distributive property to multiply a-2b by x.
x^{2}-ax+2bx-2ab=0
To find the opposite of ax-2bx, find the opposite of each term.
-ax+2bx-2ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
2bx-2ab=-x^{2}+ax
Add ax to both sides.
\left(2x-2a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(2x-2a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(2x-2a\right)b}{2x-2a}=\frac{x\left(a-x\right)}{2x-2a}
Divide both sides by 2x-2a.
b=\frac{x\left(a-x\right)}{2x-2a}
Dividing by 2x-2a undoes the multiplication by 2x-2a.
b=-\frac{x}{2}
Divide x\left(-x+a\right) by 2x-2a.
x^{2}-\left(ax-2bx\right)-2ab=0
Use the distributive property to multiply a-2b by x.
x^{2}-ax+2bx-2ab=0
To find the opposite of ax-2bx, find the opposite of each term.
-ax+2bx-2ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-ax-2ab=-x^{2}-2bx
Subtract 2bx from both sides.
\left(-x-2b\right)a=-x^{2}-2bx
Combine all terms containing a.
\frac{\left(-x-2b\right)a}{-x-2b}=-\frac{x\left(x+2b\right)}{-x-2b}
Divide both sides by -x-2b.
a=-\frac{x\left(x+2b\right)}{-x-2b}
Dividing by -x-2b undoes the multiplication by -x-2b.
a=x
Divide -x\left(x+2b\right) by -x-2b.
x^{2}-\left(ax-2bx\right)-2ab=0
Use the distributive property to multiply a-2b by x.
x^{2}-ax+2bx-2ab=0
To find the opposite of ax-2bx, find the opposite of each term.
-ax+2bx-2ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
2bx-2ab=-x^{2}+ax
Add ax to both sides.
\left(2x-2a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(2x-2a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(2x-2a\right)b}{2x-2a}=\frac{x\left(a-x\right)}{2x-2a}
Divide both sides by 2x-2a.
b=\frac{x\left(a-x\right)}{2x-2a}
Dividing by 2x-2a undoes the multiplication by 2x-2a.
b=-\frac{x}{2}
Divide x\left(-x+a\right) by 2x-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}