Solve for p
p=\frac{1+4x-x^{2}}{x+1}
x\neq -1
Solve for x (complex solution)
x=\frac{\sqrt{\left(p-10\right)\left(p-2\right)}-p+4}{2}
x=\frac{-\sqrt{\left(p-10\right)\left(p-2\right)}-p+4}{2}
Solve for x
x=\frac{\sqrt{\left(p-10\right)\left(p-2\right)}-p+4}{2}
x=\frac{-\sqrt{\left(p-10\right)\left(p-2\right)}-p+4}{2}\text{, }p\leq 2\text{ or }p\geq 10
Graph
Share
Copied to clipboard
x^{2}-\left(x-px\right)-1=3x-p
Use the distributive property to multiply 1-p by x.
x^{2}-x+px-1=3x-p
To find the opposite of x-px, find the opposite of each term.
x^{2}-x+px-1+p=3x
Add p to both sides.
-x+px-1+p=3x-x^{2}
Subtract x^{2} from both sides.
px-1+p=3x-x^{2}+x
Add x to both sides.
px-1+p=4x-x^{2}
Combine 3x and x to get 4x.
px+p=4x-x^{2}+1
Add 1 to both sides.
\left(x+1\right)p=4x-x^{2}+1
Combine all terms containing p.
\left(x+1\right)p=1+4x-x^{2}
The equation is in standard form.
\frac{\left(x+1\right)p}{x+1}=\frac{1+4x-x^{2}}{x+1}
Divide both sides by x+1.
p=\frac{1+4x-x^{2}}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}