Solve for x
x = \frac{\sqrt{14} + 2}{5} \approx 1.148331477
x=\frac{2-\sqrt{14}}{5}\approx -0.348331477
Graph
Share
Copied to clipboard
x^{2}-\frac{4}{5}x=\frac{2}{5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-\frac{4}{5}x-\frac{2}{5}=\frac{2}{5}-\frac{2}{5}
Subtract \frac{2}{5} from both sides of the equation.
x^{2}-\frac{4}{5}x-\frac{2}{5}=0
Subtracting \frac{2}{5} from itself leaves 0.
x=\frac{-\left(-\frac{4}{5}\right)±\sqrt{\left(-\frac{4}{5}\right)^{2}-4\left(-\frac{2}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{4}{5} for b, and -\frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{5}\right)±\sqrt{\frac{16}{25}-4\left(-\frac{2}{5}\right)}}{2}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{4}{5}\right)±\sqrt{\frac{16}{25}+\frac{8}{5}}}{2}
Multiply -4 times -\frac{2}{5}.
x=\frac{-\left(-\frac{4}{5}\right)±\sqrt{\frac{56}{25}}}{2}
Add \frac{16}{25} to \frac{8}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{4}{5}\right)±\frac{2\sqrt{14}}{5}}{2}
Take the square root of \frac{56}{25}.
x=\frac{\frac{4}{5}±\frac{2\sqrt{14}}{5}}{2}
The opposite of -\frac{4}{5} is \frac{4}{5}.
x=\frac{2\sqrt{14}+4}{2\times 5}
Now solve the equation x=\frac{\frac{4}{5}±\frac{2\sqrt{14}}{5}}{2} when ± is plus. Add \frac{4}{5} to \frac{2\sqrt{14}}{5}.
x=\frac{\sqrt{14}+2}{5}
Divide \frac{4+2\sqrt{14}}{5} by 2.
x=\frac{4-2\sqrt{14}}{2\times 5}
Now solve the equation x=\frac{\frac{4}{5}±\frac{2\sqrt{14}}{5}}{2} when ± is minus. Subtract \frac{2\sqrt{14}}{5} from \frac{4}{5}.
x=\frac{2-\sqrt{14}}{5}
Divide \frac{4-2\sqrt{14}}{5} by 2.
x=\frac{\sqrt{14}+2}{5} x=\frac{2-\sqrt{14}}{5}
The equation is now solved.
x^{2}-\frac{4}{5}x=\frac{2}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{2}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{2}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{14}{25}
Add \frac{2}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=\frac{14}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{14}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{\sqrt{14}}{5} x-\frac{2}{5}=-\frac{\sqrt{14}}{5}
Simplify.
x=\frac{\sqrt{14}+2}{5} x=\frac{2-\sqrt{14}}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}