Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{15}{2}x+\frac{25}{6}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{15}{2}\right)±\sqrt{\left(-\frac{15}{2}\right)^{2}-4\times \frac{25}{6}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{15}{2} for b, and \frac{25}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{15}{2}\right)±\sqrt{\frac{225}{4}-4\times \frac{25}{6}}}{2}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{15}{2}\right)±\sqrt{\frac{225}{4}-\frac{50}{3}}}{2}
Multiply -4 times \frac{25}{6}.
x=\frac{-\left(-\frac{15}{2}\right)±\sqrt{\frac{475}{12}}}{2}
Add \frac{225}{4} to -\frac{50}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{15}{2}\right)±\frac{5\sqrt{57}}{6}}{2}
Take the square root of \frac{475}{12}.
x=\frac{\frac{15}{2}±\frac{5\sqrt{57}}{6}}{2}
The opposite of -\frac{15}{2} is \frac{15}{2}.
x=\frac{\frac{5\sqrt{57}}{6}+\frac{15}{2}}{2}
Now solve the equation x=\frac{\frac{15}{2}±\frac{5\sqrt{57}}{6}}{2} when ± is plus. Add \frac{15}{2} to \frac{5\sqrt{57}}{6}.
x=\frac{5\sqrt{57}}{12}+\frac{15}{4}
Divide \frac{15}{2}+\frac{5\sqrt{57}}{6} by 2.
x=\frac{-\frac{5\sqrt{57}}{6}+\frac{15}{2}}{2}
Now solve the equation x=\frac{\frac{15}{2}±\frac{5\sqrt{57}}{6}}{2} when ± is minus. Subtract \frac{5\sqrt{57}}{6} from \frac{15}{2}.
x=-\frac{5\sqrt{57}}{12}+\frac{15}{4}
Divide \frac{15}{2}-\frac{5\sqrt{57}}{6} by 2.
x=\frac{5\sqrt{57}}{12}+\frac{15}{4} x=-\frac{5\sqrt{57}}{12}+\frac{15}{4}
The equation is now solved.
x^{2}-\frac{15}{2}x+\frac{25}{6}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{15}{2}x+\frac{25}{6}-\frac{25}{6}=-\frac{25}{6}
Subtract \frac{25}{6} from both sides of the equation.
x^{2}-\frac{15}{2}x=-\frac{25}{6}
Subtracting \frac{25}{6} from itself leaves 0.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=-\frac{25}{6}+\left(-\frac{15}{4}\right)^{2}
Divide -\frac{15}{2}, the coefficient of the x term, by 2 to get -\frac{15}{4}. Then add the square of -\frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{2}x+\frac{225}{16}=-\frac{25}{6}+\frac{225}{16}
Square -\frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{475}{48}
Add -\frac{25}{6} to \frac{225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{4}\right)^{2}=\frac{475}{48}
Factor x^{2}-\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{475}{48}}
Take the square root of both sides of the equation.
x-\frac{15}{4}=\frac{5\sqrt{57}}{12} x-\frac{15}{4}=-\frac{5\sqrt{57}}{12}
Simplify.
x=\frac{5\sqrt{57}}{12}+\frac{15}{4} x=-\frac{5\sqrt{57}}{12}+\frac{15}{4}
Add \frac{15}{4} to both sides of the equation.