Solve for x
x=2\sqrt{3}\approx 3.464101615
x=-2\sqrt{3}\approx -3.464101615
Graph
Share
Copied to clipboard
8\left(x^{2}-\frac{x^{2}}{4}-\frac{x}{4}\times \frac{3x}{4}\right)-x^{2}=42
Multiply both sides of the equation by 8, the least common multiple of 4,8.
8\left(\frac{3}{4}x^{2}-\frac{x}{4}\times \frac{3x}{4}\right)-x^{2}=42
Combine x^{2} and -\frac{x^{2}}{4} to get \frac{3}{4}x^{2}.
8\left(\frac{3}{4}x^{2}-\frac{x\times 3x}{4\times 4}\right)-x^{2}=42
Multiply \frac{x}{4} times \frac{3x}{4} by multiplying numerator times numerator and denominator times denominator.
8\left(\frac{3}{4}x^{2}-\frac{x^{2}\times 3}{4\times 4}\right)-x^{2}=42
Multiply x and x to get x^{2}.
8\left(\frac{3}{4}x^{2}-\frac{x^{2}\times 3}{16}\right)-x^{2}=42
Multiply 4 and 4 to get 16.
6x^{2}+8\left(-\frac{x^{2}\times 3}{16}\right)-x^{2}=42
Use the distributive property to multiply 8 by \frac{3}{4}x^{2}-\frac{x^{2}\times 3}{16}.
6x^{2}+\frac{x^{2}\times 3}{-2}-x^{2}=42
Cancel out 16, the greatest common factor in 8 and 16.
-12x^{2}+x^{2}\times 3+2x^{2}=-84
Multiply both sides of the equation by -2.
-9x^{2}+2x^{2}=-84
Combine -12x^{2} and x^{2}\times 3 to get -9x^{2}.
-7x^{2}=-84
Combine -9x^{2} and 2x^{2} to get -7x^{2}.
x^{2}=\frac{-84}{-7}
Divide both sides by -7.
x^{2}=12
Divide -84 by -7 to get 12.
x=2\sqrt{3} x=-2\sqrt{3}
Take the square root of both sides of the equation.
8\left(x^{2}-\frac{x^{2}}{4}-\frac{x}{4}\times \frac{3x}{4}\right)-x^{2}=42
Multiply both sides of the equation by 8, the least common multiple of 4,8.
8\left(\frac{3}{4}x^{2}-\frac{x}{4}\times \frac{3x}{4}\right)-x^{2}=42
Combine x^{2} and -\frac{x^{2}}{4} to get \frac{3}{4}x^{2}.
8\left(\frac{3}{4}x^{2}-\frac{x\times 3x}{4\times 4}\right)-x^{2}=42
Multiply \frac{x}{4} times \frac{3x}{4} by multiplying numerator times numerator and denominator times denominator.
8\left(\frac{3}{4}x^{2}-\frac{x^{2}\times 3}{4\times 4}\right)-x^{2}=42
Multiply x and x to get x^{2}.
8\left(\frac{3}{4}x^{2}-\frac{x^{2}\times 3}{16}\right)-x^{2}=42
Multiply 4 and 4 to get 16.
6x^{2}+8\left(-\frac{x^{2}\times 3}{16}\right)-x^{2}=42
Use the distributive property to multiply 8 by \frac{3}{4}x^{2}-\frac{x^{2}\times 3}{16}.
6x^{2}+\frac{x^{2}\times 3}{-2}-x^{2}=42
Cancel out 16, the greatest common factor in 8 and 16.
6x^{2}+\frac{x^{2}\times 3}{-2}-x^{2}-42=0
Subtract 42 from both sides.
-12x^{2}+x^{2}\times 3+2x^{2}+84=0
Multiply both sides of the equation by -2.
-9x^{2}+2x^{2}+84=0
Combine -12x^{2} and x^{2}\times 3 to get -9x^{2}.
-7x^{2}+84=0
Combine -9x^{2} and 2x^{2} to get -7x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-7\right)\times 84}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-7\right)\times 84}}{2\left(-7\right)}
Square 0.
x=\frac{0±\sqrt{28\times 84}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{0±\sqrt{2352}}{2\left(-7\right)}
Multiply 28 times 84.
x=\frac{0±28\sqrt{3}}{2\left(-7\right)}
Take the square root of 2352.
x=\frac{0±28\sqrt{3}}{-14}
Multiply 2 times -7.
x=-2\sqrt{3}
Now solve the equation x=\frac{0±28\sqrt{3}}{-14} when ± is plus.
x=2\sqrt{3}
Now solve the equation x=\frac{0±28\sqrt{3}}{-14} when ± is minus.
x=-2\sqrt{3} x=2\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}