Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=9+x-2x^{2}
Use the distributive property to multiply x by 1-2x.
x^{2}-9=x-2x^{2}
Subtract 9 from both sides.
x^{2}-9-x=-2x^{2}
Subtract x from both sides.
x^{2}-9-x+2x^{2}=0
Add 2x^{2} to both sides.
3x^{2}-9-x=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -1 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-\left(-1\right)±\sqrt{109}}{2\times 3}
Add 1 to 108.
x=\frac{1±\sqrt{109}}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±\sqrt{109}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{109}+1}{6}
Now solve the equation x=\frac{1±\sqrt{109}}{6} when ± is plus. Add 1 to \sqrt{109}.
x=\frac{1-\sqrt{109}}{6}
Now solve the equation x=\frac{1±\sqrt{109}}{6} when ± is minus. Subtract \sqrt{109} from 1.
x=\frac{\sqrt{109}+1}{6} x=\frac{1-\sqrt{109}}{6}
The equation is now solved.
x^{2}=9+x-2x^{2}
Use the distributive property to multiply x by 1-2x.
x^{2}-x=9-2x^{2}
Subtract x from both sides.
x^{2}-x+2x^{2}=9
Add 2x^{2} to both sides.
3x^{2}-x=9
Combine x^{2} and 2x^{2} to get 3x^{2}.
\frac{3x^{2}-x}{3}=\frac{9}{3}
Divide both sides by 3.
x^{2}-\frac{1}{3}x=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{1}{3}x=3
Divide 9 by 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=3+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=3+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{109}{36}
Add 3 to \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=\frac{109}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{109}}{6} x-\frac{1}{6}=-\frac{\sqrt{109}}{6}
Simplify.
x=\frac{\sqrt{109}+1}{6} x=\frac{1-\sqrt{109}}{6}
Add \frac{1}{6} to both sides of the equation.