Solve for x
x=-10
x=9
Graph
Share
Copied to clipboard
a+b=1 ab=-90
To solve the equation, factor x^{2}+x-90 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-9 b=10
The solution is the pair that gives sum 1.
\left(x-9\right)\left(x+10\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=9 x=-10
To find equation solutions, solve x-9=0 and x+10=0.
a+b=1 ab=1\left(-90\right)=-90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-90. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-9 b=10
The solution is the pair that gives sum 1.
\left(x^{2}-9x\right)+\left(10x-90\right)
Rewrite x^{2}+x-90 as \left(x^{2}-9x\right)+\left(10x-90\right).
x\left(x-9\right)+10\left(x-9\right)
Factor out x in the first and 10 in the second group.
\left(x-9\right)\left(x+10\right)
Factor out common term x-9 by using distributive property.
x=9 x=-10
To find equation solutions, solve x-9=0 and x+10=0.
x^{2}+x-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-90\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-90\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+360}}{2}
Multiply -4 times -90.
x=\frac{-1±\sqrt{361}}{2}
Add 1 to 360.
x=\frac{-1±19}{2}
Take the square root of 361.
x=\frac{18}{2}
Now solve the equation x=\frac{-1±19}{2} when ± is plus. Add -1 to 19.
x=9
Divide 18 by 2.
x=-\frac{20}{2}
Now solve the equation x=\frac{-1±19}{2} when ± is minus. Subtract 19 from -1.
x=-10
Divide -20 by 2.
x=9 x=-10
The equation is now solved.
x^{2}+x-90=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x-90-\left(-90\right)=-\left(-90\right)
Add 90 to both sides of the equation.
x^{2}+x=-\left(-90\right)
Subtracting -90 from itself leaves 0.
x^{2}+x=90
Subtract -90 from 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=90+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=90+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{361}{4}
Add 90 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{361}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{19}{2} x+\frac{1}{2}=-\frac{19}{2}
Simplify.
x=9 x=-10
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}