Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+95x-1495=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-95±\sqrt{95^{2}-4\left(-1495\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 95 for b, and -1495 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-95±\sqrt{9025-4\left(-1495\right)}}{2}
Square 95.
x=\frac{-95±\sqrt{9025+5980}}{2}
Multiply -4 times -1495.
x=\frac{-95±\sqrt{15005}}{2}
Add 9025 to 5980.
x=\frac{\sqrt{15005}-95}{2}
Now solve the equation x=\frac{-95±\sqrt{15005}}{2} when ± is plus. Add -95 to \sqrt{15005}.
x=\frac{-\sqrt{15005}-95}{2}
Now solve the equation x=\frac{-95±\sqrt{15005}}{2} when ± is minus. Subtract \sqrt{15005} from -95.
x=\frac{\sqrt{15005}-95}{2} x=\frac{-\sqrt{15005}-95}{2}
The equation is now solved.
x^{2}+95x-1495=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+95x-1495-\left(-1495\right)=-\left(-1495\right)
Add 1495 to both sides of the equation.
x^{2}+95x=-\left(-1495\right)
Subtracting -1495 from itself leaves 0.
x^{2}+95x=1495
Subtract -1495 from 0.
x^{2}+95x+\left(\frac{95}{2}\right)^{2}=1495+\left(\frac{95}{2}\right)^{2}
Divide 95, the coefficient of the x term, by 2 to get \frac{95}{2}. Then add the square of \frac{95}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+95x+\frac{9025}{4}=1495+\frac{9025}{4}
Square \frac{95}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+95x+\frac{9025}{4}=\frac{15005}{4}
Add 1495 to \frac{9025}{4}.
\left(x+\frac{95}{2}\right)^{2}=\frac{15005}{4}
Factor x^{2}+95x+\frac{9025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{95}{2}\right)^{2}}=\sqrt{\frac{15005}{4}}
Take the square root of both sides of the equation.
x+\frac{95}{2}=\frac{\sqrt{15005}}{2} x+\frac{95}{2}=-\frac{\sqrt{15005}}{2}
Simplify.
x=\frac{\sqrt{15005}-95}{2} x=\frac{-\sqrt{15005}-95}{2}
Subtract \frac{95}{2} from both sides of the equation.