Factor
\left(x-40\right)\left(x+130\right)
Evaluate
\left(x-40\right)\left(x+130\right)
Graph
Share
Copied to clipboard
a+b=90 ab=1\left(-5200\right)=-5200
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-5200. To find a and b, set up a system to be solved.
-1,5200 -2,2600 -4,1300 -5,1040 -8,650 -10,520 -13,400 -16,325 -20,260 -25,208 -26,200 -40,130 -50,104 -52,100 -65,80
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -5200.
-1+5200=5199 -2+2600=2598 -4+1300=1296 -5+1040=1035 -8+650=642 -10+520=510 -13+400=387 -16+325=309 -20+260=240 -25+208=183 -26+200=174 -40+130=90 -50+104=54 -52+100=48 -65+80=15
Calculate the sum for each pair.
a=-40 b=130
The solution is the pair that gives sum 90.
\left(x^{2}-40x\right)+\left(130x-5200\right)
Rewrite x^{2}+90x-5200 as \left(x^{2}-40x\right)+\left(130x-5200\right).
x\left(x-40\right)+130\left(x-40\right)
Factor out x in the first and 130 in the second group.
\left(x-40\right)\left(x+130\right)
Factor out common term x-40 by using distributive property.
x^{2}+90x-5200=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-90±\sqrt{90^{2}-4\left(-5200\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{8100-4\left(-5200\right)}}{2}
Square 90.
x=\frac{-90±\sqrt{8100+20800}}{2}
Multiply -4 times -5200.
x=\frac{-90±\sqrt{28900}}{2}
Add 8100 to 20800.
x=\frac{-90±170}{2}
Take the square root of 28900.
x=\frac{80}{2}
Now solve the equation x=\frac{-90±170}{2} when ± is plus. Add -90 to 170.
x=40
Divide 80 by 2.
x=-\frac{260}{2}
Now solve the equation x=\frac{-90±170}{2} when ± is minus. Subtract 170 from -90.
x=-130
Divide -260 by 2.
x^{2}+90x-5200=\left(x-40\right)\left(x-\left(-130\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 40 for x_{1} and -130 for x_{2}.
x^{2}+90x-5200=\left(x-40\right)\left(x+130\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}