Solve for x
x = \frac{5 \sqrt{337} - 85}{2} \approx 3.393899377
x=\frac{-5\sqrt{337}-85}{2}\approx -88.393899377
Graph
Share
Copied to clipboard
x^{2}+85x-300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-85±\sqrt{85^{2}-4\left(-300\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 85 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-85±\sqrt{7225-4\left(-300\right)}}{2}
Square 85.
x=\frac{-85±\sqrt{7225+1200}}{2}
Multiply -4 times -300.
x=\frac{-85±\sqrt{8425}}{2}
Add 7225 to 1200.
x=\frac{-85±5\sqrt{337}}{2}
Take the square root of 8425.
x=\frac{5\sqrt{337}-85}{2}
Now solve the equation x=\frac{-85±5\sqrt{337}}{2} when ± is plus. Add -85 to 5\sqrt{337}.
x=\frac{-5\sqrt{337}-85}{2}
Now solve the equation x=\frac{-85±5\sqrt{337}}{2} when ± is minus. Subtract 5\sqrt{337} from -85.
x=\frac{5\sqrt{337}-85}{2} x=\frac{-5\sqrt{337}-85}{2}
The equation is now solved.
x^{2}+85x-300=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+85x-300-\left(-300\right)=-\left(-300\right)
Add 300 to both sides of the equation.
x^{2}+85x=-\left(-300\right)
Subtracting -300 from itself leaves 0.
x^{2}+85x=300
Subtract -300 from 0.
x^{2}+85x+\left(\frac{85}{2}\right)^{2}=300+\left(\frac{85}{2}\right)^{2}
Divide 85, the coefficient of the x term, by 2 to get \frac{85}{2}. Then add the square of \frac{85}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+85x+\frac{7225}{4}=300+\frac{7225}{4}
Square \frac{85}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+85x+\frac{7225}{4}=\frac{8425}{4}
Add 300 to \frac{7225}{4}.
\left(x+\frac{85}{2}\right)^{2}=\frac{8425}{4}
Factor x^{2}+85x+\frac{7225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{2}\right)^{2}}=\sqrt{\frac{8425}{4}}
Take the square root of both sides of the equation.
x+\frac{85}{2}=\frac{5\sqrt{337}}{2} x+\frac{85}{2}=-\frac{5\sqrt{337}}{2}
Simplify.
x=\frac{5\sqrt{337}-85}{2} x=\frac{-5\sqrt{337}-85}{2}
Subtract \frac{85}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}