Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+7x-8-5x^{2}=-1
Subtract 5x^{2} from both sides.
-4x^{2}+7x-8=-1
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+7x-8+1=0
Add 1 to both sides.
-4x^{2}+7x-7=0
Add -8 and 1 to get -7.
x=\frac{-7±\sqrt{7^{2}-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 7 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
Square 7.
x=\frac{-7±\sqrt{49+16\left(-7\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-7±\sqrt{49-112}}{2\left(-4\right)}
Multiply 16 times -7.
x=\frac{-7±\sqrt{-63}}{2\left(-4\right)}
Add 49 to -112.
x=\frac{-7±3\sqrt{7}i}{2\left(-4\right)}
Take the square root of -63.
x=\frac{-7±3\sqrt{7}i}{-8}
Multiply 2 times -4.
x=\frac{-7+3\sqrt{7}i}{-8}
Now solve the equation x=\frac{-7±3\sqrt{7}i}{-8} when ± is plus. Add -7 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+7}{8}
Divide -7+3i\sqrt{7} by -8.
x=\frac{-3\sqrt{7}i-7}{-8}
Now solve the equation x=\frac{-7±3\sqrt{7}i}{-8} when ± is minus. Subtract 3i\sqrt{7} from -7.
x=\frac{7+3\sqrt{7}i}{8}
Divide -7-3i\sqrt{7} by -8.
x=\frac{-3\sqrt{7}i+7}{8} x=\frac{7+3\sqrt{7}i}{8}
The equation is now solved.
x^{2}+7x-8-5x^{2}=-1
Subtract 5x^{2} from both sides.
-4x^{2}+7x-8=-1
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+7x=-1+8
Add 8 to both sides.
-4x^{2}+7x=7
Add -1 and 8 to get 7.
\frac{-4x^{2}+7x}{-4}=\frac{7}{-4}
Divide both sides by -4.
x^{2}+\frac{7}{-4}x=\frac{7}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{7}{4}x=\frac{7}{-4}
Divide 7 by -4.
x^{2}-\frac{7}{4}x=-\frac{7}{4}
Divide 7 by -4.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=-\frac{7}{4}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=-\frac{7}{4}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=-\frac{63}{64}
Add -\frac{7}{4} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=-\frac{63}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{-\frac{63}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{3\sqrt{7}i}{8} x-\frac{7}{8}=-\frac{3\sqrt{7}i}{8}
Simplify.
x=\frac{7+3\sqrt{7}i}{8} x=\frac{-3\sqrt{7}i+7}{8}
Add \frac{7}{8} to both sides of the equation.