Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=7 ab=1\left(-60\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-60. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-5 b=12
The solution is the pair that gives sum 7.
\left(x^{2}-5x\right)+\left(12x-60\right)
Rewrite x^{2}+7x-60 as \left(x^{2}-5x\right)+\left(12x-60\right).
x\left(x-5\right)+12\left(x-5\right)
Factor out x in the first and 12 in the second group.
\left(x-5\right)\left(x+12\right)
Factor out common term x-5 by using distributive property.
x^{2}+7x-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-60\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{49-4\left(-60\right)}}{2}
Square 7.
x=\frac{-7±\sqrt{49+240}}{2}
Multiply -4 times -60.
x=\frac{-7±\sqrt{289}}{2}
Add 49 to 240.
x=\frac{-7±17}{2}
Take the square root of 289.
x=\frac{10}{2}
Now solve the equation x=\frac{-7±17}{2} when ± is plus. Add -7 to 17.
x=5
Divide 10 by 2.
x=-\frac{24}{2}
Now solve the equation x=\frac{-7±17}{2} when ± is minus. Subtract 17 from -7.
x=-12
Divide -24 by 2.
x^{2}+7x-60=\left(x-5\right)\left(x-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -12 for x_{2}.
x^{2}+7x-60=\left(x-5\right)\left(x+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.