Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+76x-8557.6=0
Multiply 76 and 112.6 to get 8557.6.
x=\frac{-76±\sqrt{76^{2}-4\left(-8557.6\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 76 for b, and -8557.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-76±\sqrt{5776-4\left(-8557.6\right)}}{2}
Square 76.
x=\frac{-76±\sqrt{5776+34230.4}}{2}
Multiply -4 times -8557.6.
x=\frac{-76±\sqrt{40006.4}}{2}
Add 5776 to 34230.4.
x=\frac{-76±\frac{4\sqrt{62510}}{5}}{2}
Take the square root of 40006.4.
x=\frac{\frac{4\sqrt{62510}}{5}-76}{2}
Now solve the equation x=\frac{-76±\frac{4\sqrt{62510}}{5}}{2} when ± is plus. Add -76 to \frac{4\sqrt{62510}}{5}.
x=\frac{2\sqrt{62510}}{5}-38
Divide -76+\frac{4\sqrt{62510}}{5} by 2.
x=\frac{-\frac{4\sqrt{62510}}{5}-76}{2}
Now solve the equation x=\frac{-76±\frac{4\sqrt{62510}}{5}}{2} when ± is minus. Subtract \frac{4\sqrt{62510}}{5} from -76.
x=-\frac{2\sqrt{62510}}{5}-38
Divide -76-\frac{4\sqrt{62510}}{5} by 2.
x=\frac{2\sqrt{62510}}{5}-38 x=-\frac{2\sqrt{62510}}{5}-38
The equation is now solved.
x^{2}+76x-8557.6=0
Multiply 76 and 112.6 to get 8557.6.
x^{2}+76x=8557.6
Add 8557.6 to both sides. Anything plus zero gives itself.
x^{2}+76x+38^{2}=8557.6+38^{2}
Divide 76, the coefficient of the x term, by 2 to get 38. Then add the square of 38 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+76x+1444=8557.6+1444
Square 38.
x^{2}+76x+1444=10001.6
Add 8557.6 to 1444.
\left(x+38\right)^{2}=10001.6
Factor x^{2}+76x+1444. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+38\right)^{2}}=\sqrt{10001.6}
Take the square root of both sides of the equation.
x+38=\frac{2\sqrt{62510}}{5} x+38=-\frac{2\sqrt{62510}}{5}
Simplify.
x=\frac{2\sqrt{62510}}{5}-38 x=-\frac{2\sqrt{62510}}{5}-38
Subtract 38 from both sides of the equation.